The future of cannabis-based therapeutics

Daniele Piomelli

Center for the Study of Cannabis,
University of California, Irvine
Cannabis: a short history

1845 Cannabis is introduced in modern science

1854-1942 Cannabis is listed in the USP as analgesic, antispasmodic

1937 Marihuana Tax Act: Cannabis becomes illegal

1944-1964 Discovery of THC

1970 Controlled Substance Act: Illegality is confirmed

1988-1990 Discovery of cannabinoid receptors

1992-1999 Discovery of the brain endocannabinoid system

2018 Medical use of cannabis legal in 30 States and DC
How does cannabis work?

Cannabis sativa L.

Δ⁹-THC

Cannabinoid receptors
Brain, peripheral neurons, adipocytes, hepatocytes, etc.

Innate and adaptive immune cells (B lymphocytes, macrophages)

Two cannabinoid receptors

CB₁

CB₂
CB₁: main cannabinoid receptor in the human brain
Cannabinoid receptors outside the brain
Two subtypes: CB₁ and CB₂

CB₁
Blood vessels: vascular resistance and blood pressure

CB₁
Kidney: vascular resistance

CB₁ and CB₂
White blood cells: Immune response

CB₁
Lungs: bronchial reactivity

Small intestine: hunger

Large intestine: contractility

Peripheral nerve terminals: Pain control
The body’s own cannabis

Cannabinoid receptors

Endocannabinoids

Δ⁹-THC

feeding
emotion
pain
memory
reward
First known lipid-based neurotransmitters
Produced upon demand, rapidly destroyed
Functionally different, but in subtle ways

Anandamide and 2-AG

2-AG
Point-to-point retrograde messenger

Anandamide
Modulatory transmitter
2-AG mediates point-to-point ‘retrograde signaling’ at CNS synapses

The enzyme DGL forms 2-AG when there is need for it
Stopping retrograde signals

The enzyme MGL degrades 2-AG when it is no longer needed.
Anandamide acts as a ‘local modulatory signal’

Social contact

Hypothalamus (PVN)

Oxytocin neuron

Anandamide

CB₁

Oxytocin receptor

Nucleus accumbens
Formation and deactivation of anandamide

The enzyme NAPE-PLD forms anandamide when there is need for it.

The enzyme FAAH degrades anandamide when it is no longer needed.
Anandamide and 2-AG

First known lipid-based neurotransmitters
Produced upon demand, rapidly destroyed
Functionally different, but in subtle ways

2-AG
Point-to-point retrograde messenger
Many functions in CNS and periphery...

Anandamide
Modulatory transmitter
CNS: social behavior, stress response
Periphery: pain

Many functions in CNS and periphery...
The endocannabinoid system is the port of entry for THC into the body.

- Lipid precursors in cell membranes
- Biologically active endocannabinoids
- Metabolites, some inactive, some active via non-CB mechanisms

Δ⁹-THC

CBR
Can we use endocannabinoid signals for therapy?

Lipid precursors in cell membranes

Biologically active endocannabinoids

Metabolites, Some inactive, some active via non-CB mechanisms

Cannabidiol?

Blocking ECB degradation enhances the system’s intrinsic regulatory functions

Greater selectivity, safety than direct CBR activation
Thank you!

Daniele Piomelli

Center for the Study of Cannabis,
University of California, Irvine